Answer:
Option C
Explanation:
For initial numbers are N1 and N2.
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{\tau_{2}}{\tau_{1}}=\frac{2\tau}{\tau}$
$=2=\frac{T_{2}}{T_{1}}$ (T= Half life)
$A= \frac{-dN}{dt}=\lambda N$
initial activity is same
$\therefore$ $\lambda_{1}N_{1}=\lambda_{2}N_{2}$ ........(i)
Activity at time t,
$A=\lambda N=\lambda N_{0}e^{-\lambda t}$
$A_{1}=\lambda_{1}N_{1}e^{-\lambda_{1}t}$
$\Rightarrow$ $R_{1}=-\frac{dA_{1}}{dt}=\lambda_{1}^{2}N_{1}e^{-\lambda_{1}t}$
similarly, $R_{2}=\lambda^{2}_{2}N_{2}e^{-\lambda_{2}t}$
After t= 2τ
$\lambda_{1}t=\frac{1}{\tau_{1}}(t)=\frac{1}{\tau}(2\tau)=2$
$\lambda_{2}t=\frac{1}{\tau_{2}}(t)=1$
$\frac{1}{2\tau}(2\tau)=1$
$\frac{R_{P}}{R_{Q}}=\frac{\lambda^{2}_{1}N_{1}e^{-\lambda_{1}t}}{\lambda^{2}_{2}N_{2}e^{-\lambda_{2}t}}$
$\frac{R_{P}}{R_{Q}}=\frac{\lambda_{1}}{\lambda_{2}}\left(\frac{e^{-2}}{e^{-1}}\right)=\frac{2}{e}$